Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 9(7)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37504741

ABSTRACT

Chromoblastomycosis (CBM) is a neglected human implantation mycosis caused by several dematiaceous fungal species. Currently available therapy is usually associated with physical methods, especially surgery, and with high refractoriness. Therefore, drug discovery for CBM is essential. Drug repositioning is a strategy used to facilitate the discovery of new treatments for several diseases. The aim of this study was to discover substances with antifungal activity against CBM agents from a collection of drugs previously approved for use in human diseases. A screening was performed with the NIH Clinical Collection against Fonsecaea pedrosoi. Ten substances, with clinical applicability in CBM, inhibited fungal growth by at least 60%. The minimum inhibitory concentration (MIC) of these substances was determined against other CBM agents, and the benzimidazoles albendazole, mebendazole and thiabendazole presented the lowest MIC values. The selectivity index, based on MIC and cytotoxicity of these substances, revealed albendazole to be more selective. To investigate a possible synergism of this benzimidazole with itraconazole and terbinafine, the chequerboard method was used. All interactions were classified as indifferent. Our current results suggest that benzimidazoles have repositioning potential against CBM agents. Albendazole seems to be the most promising, since it presented the highest selectivity against all dematiaceous fungi tested.

2.
Mem Inst Oswaldo Cruz ; 117: e210386, 2022.
Article in English | MEDLINE | ID: mdl-35293428

ABSTRACT

Chagas disease (CD) is an old neglected problem that affects more than 6 million people through 21 endemic countries in Latin America. Despite being responsible for more than 12 thousand deaths per year, the disease disposes basically of two drugs for its treatment, the nitroimidazole benznidazole and the nitrofuran nifurtimox. However, these drugs have innumerous limitations that greatly reduce the chances of cure. In Brazil, for example, only benznidazole is available to treat CD patients. Therefore, some proof-of-concept phase II clinical trials focused on improving the current treatment with benznidazole, also comparing it with repositioned drugs or combining them. Indeed, repositioning already marketed drugs in view of combating neglected tropical diseases is a very interesting approach in the context of decreased time for approval, better treatment options and low cost for development and implementation. After the introduction of human immunodeficiency virus aspartyl peptidase inhibitors (HIV-PIs) in the treatment of acquired immune deficiency syndrome (AIDS), the prevalence and incidence of parasitic, fungal and bacterial co-infections suffered a marked reduction, making these HIV-PIs attractive for drug repositioning. In this line, the present perspective presents the promising and beneficial data concerning the effects of HIV-PIs on the clinically relevant forms of Trypanosoma cruzi (i.e., trypomastigotes and amastigotes) and also highlights the ultrastructural and physiological targets for the HIV-PIs on this parasite. Therefore, we raise the possibility that HIV-PIs could be considered as alternative treatment options in the struggle against CD.


Subject(s)
Chagas Disease , HIV Infections , Trypanosoma cruzi , Chagas Disease/drug therapy , Drug Repositioning , Humans , Protease Inhibitors
3.
Mem. Inst. Oswaldo Cruz ; 117: e210386, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1365150

ABSTRACT

Chagas disease (CD) is an old neglected problem that affects more than 6 million people through 21 endemic countries in Latin America. Despite being responsible for more than 12 thousand deaths per year, the disease disposes basically of two drugs for its treatment, the nitroimidazole benznidazole and the nitrofuran nifurtimox. However, these drugs have innumerous limitations that greatly reduce the chances of cure. In Brazil, for example, only benznidazole is available to treat CD patients. Therefore, some proof-of-concept phase II clinical trials focused on improving the current treatment with benznidazole, also comparing it with repositioned drugs or combining them. Indeed, repositioning already marketed drugs in view of combating neglected tropical diseases is a very interesting approach in the context of decreased time for approval, better treatment options and low cost for development and implementation. After the introduction of human immunodeficiency virus aspartyl peptidase inhibitors (HIV-PIs) in the treatment of acquired immune deficiency syndrome (AIDS), the prevalence and incidence of parasitic, fungal and bacterial co-infections suffered a marked reduction, making these HIV-PIs attractive for drug repositioning. In this line, the present perspective presents the promising and beneficial data concerning the effects of HIV-PIs on the clinically relevant forms of Trypanosoma cruzi (i.e., trypomastigotes and amastigotes) and also highlights the ultrastructural and physiological targets for the HIV-PIs on this parasite. Therefore, we raise the possibility that HIV-PIs could be considered as alternative treatment options in the struggle against CD.

4.
Nat Prod Res ; 35(24): 5981-5987, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32840398

ABSTRACT

The chemical composition and biological properties of citronella essential oil were modified by enzymatic esterification reaction of the major monoterpenic alcohols with cinnamic acid. The almost complete conversion of geraniol and citronellol present in the citronella (Cymbopogon winterianus) essential oil, into geranyl (99%) and citronellyl (98%) cinnamates was obtained after 48 hours of reaction using a molar ratio of 3:1 (cinnamic acid/alcohol), lipase concentration (Novozym 435) of 15% (w/w) and 70 °C. The esterified oil showed higher antimicrobial activity against Staphylococcus aureus bacteria resistant to oxacillin and penicillin and also greater larvicidal activity against Aedes aegypti larvae compared to unesterified oil. The results concerning the evaluation of toxicity against Artemia salina and cytotoxicity against monkey kidney epithelial cells also showed the superiority of the esterified oil.


Subject(s)
Cymbopogon , Oils, Volatile , Acyclic Monoterpenes , Animals , Esterification , Plant Oils
5.
Chemosphere ; 252: 126349, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32443257

ABSTRACT

Biosurfactants have potential applications in the remediation of petroleum-contaminated sites. Several strategies can be used to reduce the production costs of these surfactants and make the process more environmentally friendly. In this study, we combined some of these strategies to produce the rhamnolipid-type biosurfactant, including the use of the genetically modified strain Pseudomonas aeruginosa-estA, an industrial coproduct as a carbon source, a simple and low-cost medium, and a simple downstream process. The process resulted in a high yield (17.6 g L-1), even using crude glycerin as the carbon source, with substrate in product conversion factor (YRML/s) of 0.444. The cell-free supernatant (CFS) was not toxic to Artemia salina and selected mammalian cell lineages, suggesting that it can be used directly in the environment without further purification steps. Qualitative analysis showed that CFS has excellent dispersion in the oil-displacement test, emulsifying (IE24 = 65.5%), and tensoactive properties. When salinity, temperature and pressure were set to seawater conditions, the values for interfacial tension between crude oil and water were below 1.0 mN m-1. Taken together, these results demonstrate that it is possible to obtain a nontoxic crude rhamnolipid product, with high productivity, to replace petroleum-based surfactants in oil spill cleanups and other environmental applications.


Subject(s)
Biodegradation, Environmental , Glycolipids/metabolism , Petroleum/metabolism , Animals , Artemia , Carbon , Emulsions , Petroleum/analysis , Petroleum Pollution/analysis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Surface Tension , Surface-Active Agents/chemistry , Temperature
6.
Biometals ; 32(4): 671-682, 2019 08.
Article in English | MEDLINE | ID: mdl-31230149

ABSTRACT

Hydrazide ligand, (Z)-N'-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)isonicotinohydrazide, 1 forms from a 1:1 Schiff base condensation reaction between isoniazid (INH) and 1,10-phenanthroline-5,6-dione (phendione). Ag+ and Mn2+ complexes with 1:2 metal:ligand stoichiometry are prepared: [Ag(1)2]NO3, [Ag(1)2]BF4 and [Mn(1)2](NO3)2. Polymeric {[Ag(1)(NO3)]}n has 1:1 stoichiometry and forms upon infusion of CH2Cl2 into a DMSO solution of [Ag(1)2]NO3. {[Ag(1)(NO3)]}n was structurally characterized using X-ray crystallography. Metal-free 1 and its 1:2 complexes exhibit very good, broad-spectrum antimicrobial activity and are not excessively toxic to mammalian cells (A549 lineage).


Subject(s)
Anti-Infective Agents/chemistry , Coordination Complexes/chemistry , Isoniazid/chemistry , Manganese/chemistry , Phenanthrolines/chemistry , Silver/chemistry , A549 Cells , Anti-Infective Agents/pharmacology , Cell Survival/drug effects , Humans , Microbial Sensitivity Tests
8.
PLoS One ; 13(9): e0203159, 2018.
Article in English | MEDLINE | ID: mdl-30231045

ABSTRACT

Flavonoids are one of the most important and diversified phenolic groups among products of natural origin. An important property of this metabolite class is the antioxidant action. This study evaluated the antioxidant and cytotoxic activities and oxidative stress of transesterification products of the flavonoid rutin, catalyzed by Novozym® 435. The presence of monoacetate and diacetate was confirmed by quantitative evaluation of the retention times (rutin, 15.68 min; rutin monoacetate, 18.14 min; and rutin diacetate, 18.57 min) and by the data from LC-MS and NMR 1H and 13C. The experiment showed excellent conversion values of 96% in total acetates (rutin monoacetate and diacetate). These results confirmed that rutin derivatives have antioxidant potential, as evaluated by the ORAC method (rutin standard: 0.53 ± 0.08 µM Trolox/g and rutin derivatives: 2.33 ± 1.08 µM Trolox/g) and also show low cytotoxicity in human and animal cells. Rutin derivatives reduced the production of reactive oxygen species in RAW macrophages as well. Many qualities attributed to rutin derivatives make them promising potential candidates for use as nutraceuticals, including their high amounts of antioxidants, biological potential and low toxicity, which contribute to the reduction of oxidative stress.


Subject(s)
Lipase/metabolism , Rutin/analogs & derivatives , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Enzymes, Immobilized , Esterification , Fungal Proteins , Hep G2 Cells , Humans , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Nuclear Magnetic Resonance, Biomolecular , Oxidative Stress , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Rutin/metabolism , Rutin/pharmacology , Vero Cells
10.
Dalton Trans ; 46(16): 5297-5307, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28382355

ABSTRACT

Trypanosoma cruzi and Leishmania amazonensis are the causative agents of Chagas' disease and leishmaniasis, respectively. These conditions affect millions of people worldwide, especially in developing countries. As such, there is an urgent need for novel, efficient and cost-effective treatments for these diseases, given the growing resistance and side-effects of current therapies. This work details the synthesis and evaluation of the anti-parasitic activity of novel amino- and iminopyridyl metal chelators, their glycosylated derivatives and some of their metal complexes. Our results revealed the potent and metal-dependent activity for the aminopyridyl compounds: Cu(ii) complexes were most effective against T. cruzi trypomastigotes, while Zn(ii) complexes presented excellent activity against L. amazonensis promastigotes. In addition, the compounds showed excellent selectivity indexes and very low relative toxicity as judged by in vitro and in vivo studies, respectively, using RAW macrophages and Galleria mellonella larvae model.


Subject(s)
Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/pharmacology , Chelating Agents/chemical synthesis , Chelating Agents/pharmacology , Leishmania/drug effects , Trypanosoma cruzi/drug effects , Aminopyridines/chemistry , Animals , Antiparasitic Agents/chemistry , Chelating Agents/chemistry , Copper/chemistry , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Larva/drug effects , Mice , Moths , RAW 264.7 Cells , Sensitivity and Specificity , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...